Common Hamiltonians (quanguru.QuantumToolbox.Hamiltonians)#

Contains functions to create some standard Hamiltonians.

Functions#

qubCavFreeHam(qubFreq, cavFreq, cavDim)

Creates Qubit + Cavity Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a} for given frequencies and truncated cavity dimension.

RabiHam(qubFreq, cavFreq, g, cavDim)

Creates Rabi Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a} + g\hat{\sigma}_{x}(\hat{a}^{\dagger} + \hat{a}) for given frequencies, coupling strength, and truncated cavity dimension.

JCHam(qubFreq, cavFreq, g, cavDim)

Creates Jaynes-Cummings Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a} + g(\hat{\sigma}_{-}\hat{a}^{\dagger} + \hat{\sigma}_{+}\hat{a}) for given frequencies, coupling strength, and truncated cavity dimension.

aJCHam(qubFreq, cavFreq, g, cavDim)

Creates anti-Jaynes-Cummings Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a} + g(\hat{\sigma}_{+}\hat{a}^{\dagger} + \hat{\sigma}_{-}\hat{a}) for given frequencies, coupling strength, and truncated cavity dimension.

UJC(wq, wc, g, t, dimC[, sparse])

Analytical implementation of the time independante Jaynes-Cummings Unitary evolution

Function Name

Docstrings

Examples

Unit Tests

Tutorials

qubCavFreeHam

      ✅

    ❌

    ❌

    ❌

RabiHam

      ✅

    ❌

    ❌

    ❌

JCHam

      ✅

    ❌

    ❌

    ❌

aJCHam

      ✅

    ❌

    ❌

    ❌

UJC

      ✅

    ❌

    ✅

    ❌

qubCavFreeHam(qubFreq: float, cavFreq: float, cavDim: int) Tuple[Union[scipy.sparse._base.spmatrix, numpy.ndarray], Union[scipy.sparse._base.spmatrix, numpy.ndarray]][source]#

Creates Qubit + Cavity Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a} for given frequencies and truncated cavity dimension.

Hilbert space ordering is Qubit\otimes Cavity, i.e. qubit first.

Parameters
  • qubFreq (float) – qubit frequency

  • cavFreq (float) – cavity frequency

  • cavDim (int) – (truncated) dimension for cavity

Returns

Qubit + Cavity Hamiltonian for given frequencies and truncated cavity dimension.

Return type

Matrix

Examples

# TODO

RabiHam(qubFreq: float, cavFreq: float, g: float, cavDim: int) Union[scipy.sparse._base.spmatrix, numpy.ndarray][source]#

Creates Rabi Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a}
+ g\hat{\sigma}_{x}(\hat{a}^{\dagger} + \hat{a}) for given frequencies, coupling strength, and truncated cavity dimension.

Parameters
  • cavFreq (float) – cavity frequency

  • qubFreq (float) – qubit frequency

  • g (float) – coupling strength

  • cavDim (int) – (truncated) dimension for cavity

Returns

Rabi Hamiltonian for given frequencies

Return type

Matrix

Examples

# TODO Create some examples both in here and the demo script

JCHam(qubFreq: float, cavFreq: float, g: float, cavDim: int) Union[scipy.sparse._base.spmatrix, numpy.ndarray][source]#

Creates Jaynes-Cummings Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} + \omega_{c}\hat{a}^{\dagger}\hat{a}
+ g(\hat{\sigma}_{-}\hat{a}^{\dagger} + \hat{\sigma}_{+}\hat{a}) for given frequencies, coupling strength, and truncated cavity dimension.

Parameters
  • cavFreq (float) – cavity frequency

  • qubFreq (float) – qubit frequency

  • g (float) – coupling strength

  • cavDim (int) – (truncated) dimension for cavity

Returns

Jaynes-Cummings Hamiltonian for given frequencies

Return type

Matrix

Examples

# TODO Create some examples both in here and the demo script

aJCHam(qubFreq: float, cavFreq: float, g: float, cavDim: int) Union[scipy.sparse._base.spmatrix, numpy.ndarray][source]#

Creates anti-Jaynes-Cummings Hamiltonian \frac{\omega_{q}}{2}\hat{\sigma}_{z} +
\omega_{c}\hat{a}^{\dagger}\hat{a}
+ g(\hat{\sigma}_{+}\hat{a}^{\dagger} + \hat{\sigma}_{-}\hat{a}) for given frequencies, coupling strength, and truncated cavity dimension.

Parameters
  • cavFreq (float) – cavity frequency

  • qubFreq (float) – qubit frequency

  • g (float) – coupling strength

  • cavDim (int) – (truncated) dimension for cavity

Returns

anti-Jaynes-Cummings Hamiltonian for given frequencies

Return type

Matrix

Examples

# TODO Create some examples both in here and the demo script

UJC(wq: float, wc: float, g: float, t: float, dimC: int, sparse=False) Union[scipy.sparse._base.spmatrix, numpy.ndarray][source]#
Analytical implementation of the time independante Jaynes-Cummings Unitary evolution

see Stenholm 1973 (https://doi.org/10.1016/0370-1573(73)90011-2) #TODO: explain the basis

Parameters
  • wq (float) – qubit frequency

  • wc (float) – cavity frequency

  • g (float) – coupling strength

  • t (float) – evolution time

  • dimC (int) – cavity dimention

Returns

Unitary matrix describing free evolution of the Jaynes-Cummings model

Return type

Matrix

Examples

# TODO Create some examples both in here and the demo script